CÓDIGO PYTHON CECH v1.0
Documentação do Sistema Liber-Eledonte
Total: 2609 linhas em 7 arquivos
Licença: ⒶRobinRight 3.0 + CC BY-SA 4.0

cech_core.py (578 linhas)
Núcleo do sistema com todas as classes fundamentais.
Classes Principais:
Constants: Constantes físicas e matemáticas (α_LP, φ, etc.)
Quaternion: Quaternions ℍ para rotações (versão light de Cℓ₄,₁)
OperadorParaconsistente: Implementação do operador ⊕
FuncaoPhiLiber: Função Φ-LIBER com clamping hiperconsistente
ProtocoloHermes: Protocolo P=NP* (Alice-Bob)
RedeOdissidica: Topologia 11×11 small-world
InfoCompostagem: Sistema digestor de informação
TorusOrusSimulator: Simulação da contração Torus→Orus
SistemaLiberEledonte: Sistema integrado
Exemplo de Uso:
from cech_core import SistemaLiberEledonte

sistema = SistemaLiberEledonte()
resultados = sistema.executar_simulacao(n_iteracoes=100)
confiabilidade = sistema.calcular_confiabilidade()
print(f"Confiabilidade: {confiabilidade['total']*100:.0f}%")

cech_visualization.py (418 linhas)
Módulo de visualização e geração de gráficos.
Funções Principais:
plot_phi_liber_surface(): Superfície 3D da Φ-LIBER
plot_rede_odissidica(): Visualização da rede 11×11
plot_torus_orus_contraction(): Animação da contração
plot_operador_paraconsistente(): Superfície do ⊕
plot_triologia_regimes(): Caos→Ordem→Hiperconsistência
plot_arquitetura_stack(): Diagrama das 5 camadas
Exemplo:
from cech_visualization import CECHVisualizer

viz = CECHVisualizer()
viz.plot_phi_liber_surface('phi_liber.png')
viz.plot_triologia_regimes('trialogia.png')

cech_simulation_3body.py (290 linhas)
Simulação do problema dos 3 corpos com métrica reológica.
Classes:
OraculoTresCorpos: Simulação com viscosidade ajustável
ComparadorRegimes: Compara Caos/Ordem/Hiperconsistência
Exemplo:
from cech_simulation_3body import ComparadorRegimes

comparador = ComparadorRegimes()
resultados = comparador.executar_comparacao(condicoes_iniciais, t_max=50)
print(comparador.gerar_relatorio())

cech_ksat_solver.py (338 linhas)
Solver K-SAT paraconsistente com compostagem de resíduos.
Classes:
InstanciaKSAT: Representação de instância K-SAT
ResiduoComputacional: Resíduo de tentativa falha
OperadorReconvolucaoKSAT: Operador ⊕ para K-SAT
SolverKSATParaconsistente: Solver com backtracking paraconsistente
Exemplo:
from cech_ksat_solver import SolverKSATParaconsistente
from cech_ksat_solver import gerar_instancia_aleatoria

instancia = gerar_instancia_aleatoria(n_vars=15, n_clausulas=30, k=3)
solver = SolverKSATParaconsistente(instancia)
status, atribuicao, confianca = solver.resolver()

cech_rbu_quatinga.py (345 linhas)
Sistema de RBU com privacidade diferencial.
Classes:
Beneficiario: Representa beneficiário da RBU
TransferenciaRBU: Transferência de recursos
ProtocoloPrivacidadeDiferencial: Privacidade ε=0.1
SistemaRBUQuatinga: Sistema completo
AuditoriaComunitaria: Auditoria por sorteio
Exemplo:
from cech_rbu_quatinga import SistemaRBUQuatinga

sistema = SistemaRBUQuatinga()
id_hash = sistema.cadastrar_beneficiario("Nome", "1980-01-01", "POLIGONO_1")
resultado = sistema.executar_transferencia_mensal()
relatorio = sistema.gerar_relatorio_agregado()

cech_hardware_interface.py (330 linhas)
Interface com hardware Raspberry Pi.
Classes:
SimuladorGPIO: Simula GPIO do Raspberry Pi
GerenciadorEnergia: Gerenciamento solar/bateria
InterfaceLoRa: Comunicação LoRa 915MHz
NodeEledonte: Nodo completo
Exemplo:
from cech_hardware_interface import NodeEledonte

node = NodeEledonte("NODE_001")
node.inicializar()
resultado = node.executar_ciclo()
node.shutdown()

main.py (310 linhas)
CLI unificado do sistema CECH.
Comandos:
python main.py teste # Testes unitários
python main.py simular -i 100 # Simulação
python main.py visualizar # Diagramas
python main.py 3corpos # 3 corpos
python main.py ksat # Solver K-SAT
python main.py rbu -b 50 # Simulação RBU
python main.py hardware # Hardware
Uso:
python main.py teste
python main.py simular --iteracoes 100 --output resultado.json

