# PROTOCOLO HERMES-LIBER v2.0

# Metodologia de Interpretação Rigorosa para Todos os Modelos Claude

Versão: 2.0

Data: 19 de Outubro de 2025

Aplicável a: Claude Haiku, Sonnet, Opus

**Autor:** Marcus Vinicius Brancaglione + Claude (consenso)

Licença: ARobinRight 3.0

# ÍNDICE

- 1. Fundamentos
- 2. <u>Hierarquia de Interpretação</u>
- 3. Marcadores Padronizados
- 4. Gatilhos Automáticos
- 5. Árvore de Decisão
- 6. Métricas de Confiabilidade
- 7. Aplicação Prática
- 8. Adaptações por Modelo
- 9. Padrões de Qualidade

# 1. FUNDAMENTOS {#fundamentos}

#### 1.1 Princípio Central

"Inferências não se dão ao acaso, mesmo quando se desconhece sua arquitetura."

Quando uma teoria menciona:

- Flutuações quânticas → Implica epsilon mínimo (L P)
- Conservação informacional → Implica estrutura paraconsistente

• Passagens dimensionais → Implica topologia não-trivial

Estas NÃO são especulações. São demandas da teoria.

#### 1.2 Distinção Crítica

| Categoria       | Definição                            | Exemplo                |
|-----------------|--------------------------------------|------------------------|
| Literal [L]     | Citação direta do texto              | "vácuo não está vazio" |
| Inferência [I]  | Consequência física necessária       | flutuações → T_min > 0 |
| Conexão [C]     | Síntese entre conceitos relacionados | eco + conservação      |
| Especulação [E] | Elemento sem base textual/física     | função seno arbitrária |

#### 1.3 Regra de Ouro

FAÇA: Compute consequências físicas necessárias

X NÃO FAÇA: Invente valores/mecanismos arbitrários

# 2. HIERARQUIA DE INTERPRETAÇÃO (9 NÍVEIS) {#hierarquia}

#### Nível 1: [L] LITERAL (100% confiabilidade)

- Citação direta do texto fonte
- Fórmulas matemáticas explícitas
- Valores numéricos fornecidos

**Exemplo:**  $\alpha = 0.047$  (Paper II v2.0)

# Nível 2: [I] INFERÊNCIA NECESSÁRIA FÍSICA (95%)

- Consequência obrigatória de leis físicas
- Derivação direta de princípios estabelecidos

#### **Gatilhos:**

- "flutuações quânticas" → ε ≈ L\_P, T\_min > 0
- "conservação energia" → ∂E/∂t = 0

"simetria CPT" → antipartícula existe

**Exemplo:** Se há flutuações do vácuo, temperatura nunca é zero absoluto (3ª Lei + Heisenberg)

### Nível 3: [I→] INFERÊNCIA DEMANDADA ESTRUTURAL (90%)

- Estrutura matemática requerida pela teoria
- Topologia/geometria necessária

#### **Gatilhos:**

- "passagem dimensional" → singularidade removível
- "conservação informação"  $\rightarrow \chi = 0$  (topológico)
- "espaço discreto" → matemática não-standard

**Exemplo:** "Olho de Orus" como passagem → singularidade tipo buraco de minhoca

### Nível 4: [I≈] INFERÊNCIA APROXIMADA (85%)

- Consequência provável mas não única
- Ordem de magnitude razoável

Exemplo:  $\epsilon \approx L_P = 1.616e-35 \text{ m (não 1e-308 computacional)}$ 

# Nível 5: [C=] CONEXÃO MESMO DOMÍNIO (80%)

- Síntese entre conceitos do mesmo campo
- Ambos aparecem no texto

**Exemplo:** "eco de buraco negro" + "conservação informação" → eco preserva informação

# Nível 6: [C≈] CONEXÃO ENTRE DOMÍNIOS (70%)

- Ponte conceitual entre áreas diferentes
- Analogia estrutural válida

**Exemplo:** Topologia ( $\chi$ =0)  $\leftrightarrow$  Economia (RBU resiliente)

### Nível 7: [H] HIPÓTESE PLAUSÍVEL (60%)

- Proposta testável
- Base em literatura estabelecida

Exemplo: Universo cíclico (Penrose) + "orus-torus" de Brancaglione

### Nível 8: [E?] ESPECULAÇÃO FUNDAMENTADA (40%)

- Palpite educado
- Requer validação

**Exemplo:** Relação específica entre α e constante de estrutura fina

## Nível 9: [E!] ESPECULAÇÃO ARBITRÁRIA (15%)

- Valor/função sem justificativa
- Escolha por conveniência

Exemplo: Usar sin(fase) sem razão física

# 3. MARCADORES PADRONIZADOS {#marcadores}

#### 3.1 Uso em Código



```
# [L] Literal do Paper II v2.0
alpha = 0.047
phi = 1.618033988
# [I] Inferência necessária (flutuações quânticas)
epsilon min = 1.616e-35 # Comprimento de Planck
# [I \rightarrow] Inferência demandada (conservação \chi=0)
def chi invariante(topologia):
  return 0 # Sempre preservado
# [C=] Conexão no mesmo domínio
def rbu_resiliente(chi, lambda_liber):
  \# \chi = 0 + \Lambda \rightarrow sistema\ robusto
  return lambda_liber * (1 if chi == 0 else 0)
# [E!] ESPECULAÇÃO - marcar claramente
# GAP: Não há justificativa para seno aqui
fase arbitraria = math.sin(t) # [E!] Escolha arbitrária
```

#### 3.2 Uso em Texto

#### **Correto:**

- [L] Brancaglione afirma: "vácuo não está vazio"
- [I] Portanto, deve haver flutuações mínimas de escala L P
- [I→] Isso demanda matemática de infinitesimais (análise não-standard)
- [C=] Conectando com ecos de buracos negros mencionados...

#### **Incorreto:**

O vácuo não está vazio, então usei epsilon=1e-308 [sem marcar que é arbitrário]

# 4. GATILHOS AUTOMÁTICOS {#gatilhos}

#### 4.1 Física

| Conceito no Texto      | Inferência Automática       | Tipo                   |
|------------------------|-----------------------------|------------------------|
| "flutuações quânticas" | ε ≈ L_P, T > 0              | $[ I \! \downarrow  ]$ |
| "conservação energia"  | $\partial E/\partial t = 0$ | $[ I \! \downarrow  ]$ |
| "entropia"             | S ≥ 0, dS/dt ≥ 0            | $[ I \! \downarrow  ]$ |
| "simetria U(1)"        | $\partial \mu j^{\mu} = 0$  | $[ I \! \downarrow  ]$ |
| "horizonte de eventos" | singularidade removível     | [I→]                   |

#### 4.2 Matemática

| Conceito               | Estrutura Demandada             | Tipo |
|------------------------|---------------------------------|------|
| "passagem dimensional" | topologia não-trivial           | [I→] |
| "conservação χ"        | invariante Euler-Poincaré       | [I→] |
| "espaço discreto"      | reticulado/análise não-standard | [I→] |
| "operador ⊕"           | álgebra paraconsistente         | 「I→] |

#### 4.3 Social/Econômico

| Conceito                  | Implicação                | Tipo |
|---------------------------|---------------------------|------|
| "contribuição voluntária" | sistema mutual            | [C=] |
| "microcrédito"            | juros baixos sustentáveis | [C=] |
| "RBU incondicional"       | sem contrapartidas        | [L]  |

# 5. ÁRVORE DE DECISÃO {#arvore}



# ELEMENTO ENCONTRADO NO TEXTO - Está citado literalmente? ---> [L] LITERAL (100%) L Não - É consequência física obrigatória? —> [I↓] INF. NECESSÁRIA (95%) L Não − A estrutura matemática/topológica demanda? $\longrightarrow$ [I $\rightarrow$ ] INF. DEMANDADA (90%) L Não — Ambos conceitos estão no texto (mesmo domínio)? —> [C=] CONEXÃO (80%) L Não — Conexão entre domínios com base estrutural? —> [C≈] CONEXÃO INTERDOMAIN (70%) L Não — Hipótese testável com literatura? —> [H] HIPÓTESE (60%) L Não − Palpite com alguma base? —> [E?] ESPECULAÇÃO **FUNDAMENTADA (40%)** L-Não └─ Valor/função arbitrária ──> [E!] ESPECULAÇÃO ARBITRÁRIA (15%) — MARCAR EXPLICITAMENTE

# 6. MÉTRICAS DE CONFIABILIDADE {#metricas}

# 6.1 Ratio L/E (Literal/Especulação)



```
def calcular confiabilidade(elementos):
  literais = sum(1 for e in elementos if e.tipo == 'L')
  inferencias = sum(1 for e in elementos if e.tipo.startswith('I'))
  conexoes = sum(1 for e in elementos if e.tipo.startswith('C'))
  especulacoes = sum(1 for e in elementos if e.tipo.startswith('E'))
  # Pesos
  score = (
     literais * 1.0 +
     inferencias * 0.9 +
     conexoes * 0.7 +
     especulacoes * 0.3
  total = len(elementos)
  confiabilidade = (score / total) * 100
  # Critério de aceitação
  ratio_LE = literais / (especulacoes + 1)
  return {
     'confiabilidade': confiabilidade,
     'ratio LE': ratio LE,
     'aprovado': ratio LE > 3 and confiabilidade > 70
```

#### 6.2 Critérios de Sucesso

#### APROVADO:

• Ratio L/E > 3 (mais literal que especulação)

- Confiabilidade > 70%
- Todas especulações [E!] marcadas explicitamente

#### **A REVISAR:**

- Ratio L/E entre 1-3
- Confiabilidade 50-70%
- Algumas especulações não marcadas

#### **X** REPROVAR:

- Ratio L/E < 1
- Confiabilidade < 50%
- Especulações apresentadas como fatos

# 7. APLICAÇÃO PRÁTICA {#aplicacao}

#### 7.1 Template de Análise



markdown

### # ANÁLISE: [Título do Conceito]

#### ## Dados Literais [L]

- Citação 1: "texto exato" (fonte)
- Citação 2: fórmula matemática (Paper X)

#### ## Inferências Necessárias [I]

- Se flutuações quânticas  $\rightarrow \varepsilon \approx L_P$  (Heisenberg)
- Se conservação  $\rightarrow \partial/\partial t = 0$  (1ª Lei Termodinâmica)

#### ## Inferências Demandadas [I→]

- Passagem dimensional → topologia Orus-Torus
- $-\chi = 0 \rightarrow$  estrutura tipo handle

#### ## Conexões [C]

- Eco (física) + Conservação (topologia) → [C=]
- RBU (economia) + Resiliência ( $\chi$ =0)  $\rightarrow$  [C $\approx$ ]

#### ## Hipóteses [H]

- Universo cíclico (Penrose + orus-torus)

#### ## Gaps/Especulações [E]

- [E!] Valor 1e-308: arbitrário (computacional, não físico)
- [E!] Função seno: sem justificativa

#### ## Confiabilidade

- Literais: 5
- Inferências: 8
- Conexões: 3
- Especulações: 2

- \*\*Ratio L/E: 2.5\*\* ▲ (melhorar para >3)
- \*\*Confiabilidade: 78%\*\*

#### 7.2 Checklist Antes de Publicar



markdown

- ☐ Todos literais [L] têm citação de fonte?
- ☐ Inferências [I] têm justificativa física/matemática?
- ☐ Conexões [C] verificadas (ambos conceitos no texto)?
- ☐ Especulações [E] marcadas EXPLICITAMENTE?
- $\square$  Ratio L/E > 3?
- ☐ Confiabilidade > 70%?
- ☐ Gaps documentados claramente?

# 8. ADAPTAÇÕES POR MODELO {#modelos}

#### 8.1 Claude Haiku

**Foco:** Brevidade + Rigor



```
# Haiku: respostas curtas mas precisas

def resposta_haiku(conceito):

# SEMPRE marcar tipo de interpretação

if conceito in textos_originais:

return f''[L] {conceito}" # Literal

elif eh_consequencia_fisica(conceito):

return f''[I\] {conceito}" # Inferência necessária

else:

return f''[E!] GAP: {conceito}" # Especulação ou lacuna
```

Princípio: Mesmo curto, nunca omitir marcadores.

#### 8.2 Claude Sonnet

Foco: Equilíbrio Clareza + Profundidade



```
def resposta_sonnet(conceito):
  Sonnet: análise balanceada
  111111
  #1. Literal
  literal = buscar_em_textos(conceito)
  # 2. Inferências
  inferencias = derivar_consequencias(literal)
  #3. Conexões
  conexoes = identificar_relacionados(inferencias)
  # 4. Gaps
  gaps = elementos sem base(conceito)
  # 5. Documentar tudo
  return {
     'literal': literal, #[L]
     'inferencias': inferencias, #[I]
     'conexoes': conexoes, #[C]
     'gaps': gaps, # [E]
     'confiabilidade': calcular(literal, gaps)
```

Princípio: Explicar caminho completo do raciocínio.

### 8.3 Claude Opus

**Foco:** Síntese + Rigor Máximo

```
python
```

```
def resposta_opus(conceito):
  Opus: análise exaustiva + síntese elegante
  # Análise completa (como Sonnet)
  analise = resposta_sonnet(conceito)
  # Sintese adicional
  sintese = {
     'nucleo_duro': extrair_invariantes(analise),
     'implicacoes': derivar_todas_consequencias(analise),
     'predicoes': propor_testes(analise),
     'formalizacao': matematizar rigoroso(analise)
  # Meta-análise
  meta = {
     'confiabilidade teorica': 90,
     'confiabilidade empirica': 0, #Honestidade
     'proximos_passos': ['validar X', 'testar Y']
  return analise + sintese + meta
```

Princípio: Profundidade sem perder transparência sobre gaps.

# 9. PADRÕES DE QUALIDADE {#qualidade}

# 9.1 Para Artefatos de Código



javascript

```
// === TEMPLATE PADRÃO ====
* [Título do Sistema]
* HIERARQUIA DE FONTES:
* 1. [L] Papers I-IV, Dataset ReCivitas
* 2. [I] Consequências físicas necessárias
* 3. [I→] Estruturas matemáticas demandadas
* CONFIABILIDADE: X% (calculada)
* RATIO L/E: Y (>3 requerido)
 */
// [L] Constantes literais dos textos
const ALPHA = 0.047; // Paper II v2.0
const PHI = 1.618033988; // Razão áurea
const BETA = 0.31; // Quatinga Velho (13 anos)
// [I\] Inferências necessárias
const L PLANCK = 1.616e-35; // Escala minima (flutuações quânticas)
//[I\rightarrow] Estruturas demandadas
function chiInvariante(topologia) {
  return 0; //\chi=0 sempre preservado (passagem dimensional)
// [E!] ESPECULAÇÕES - marcar claramente
// GAP: Não há justificativa física para esta função específica
const FASE_ARBITRARIA = Math.sin(t); // [E!] Placeholder - substituir
```

# 9.2 Para Papers/HTMLs

# Estrutura Obrigatória:



html

```
<section id="metodologia">
  <h2>METODOLOGIA</h2>
  <h3>Protocolo HERMES-LIBER v2.0</h3>
  Aplicamos rigorosamente:
  \leq u1 >
    \langle li \rangle[L] Elementos literais: \alpha = 0.047, \varphi = 1.618 \langle li \rangle
    <li>[I\downarrow] Inferências físicas: flutuações \rightarrow \varepsilon \approx L_P </li>
    |I→| Estruturas demandadas: Orus-torus M₅
    ⟨li⟩[C=] Conexões validadas: eco + conservação
    [E!] Especulações: ZERO (ou marcadas explicitamente)
  \leq /u1 >
  <h3>Confiabilidade</h3>
  >
      Componente
      Tipo
      Confiabilidade
    >
      Dados QV (2008-2021)
      [L]
       100\% 
    >
      \langle td \rangle \beta \equiv 0.31 \langle /td \rangle
      [L]
       100\% 
    >
```

```
<td>\epsilon \approx L P
      []\downarrow]
       95\% 
    >
      \langle td \rangle \chi = 0 \rightarrow resiliência \langle /td \rangle
       [I \rightarrow ] 
       90\% 
    <div class="warning">
    <strong>GAPS IDENTIFICADOS:</strong>
    \leq u1 >
      Valor exato de conversão token→R$ (calibrado, não derivado)
      Mecanismo preciso de passagem Orus (conceitual)
    </u1>
  </div>
</section>
```

#### 9.3 Qualidade Mínima Aceitável

Para qualquer artefato ser aprovado:

| Critério              | Mínimo | Ideal |
|-----------------------|--------|-------|
| Ratio L/E             | > 2.0  | > 5.0 |
| Confiabilidade        | > 65%  | > 85% |
| Literais citados      | 100%   | 100%  |
| Especulações marcadas | 100%   | N/A   |
| Gaps documentados     | 100%   | 100%  |

### 10. CONCLUSÃO

#### 10.1 Lição Principal

70% do que parece "especulação" são inferências legítimas.

Quando teoria menciona:

- Flutuações quânticas → IMPLICA epsilon mínimo
- Conservação informação → DEMANDA estrutura paraconsistente
- Passagens dimensionais → REQUER topologia não-trivial

#### 10.2 Prática Correta

- **✓** Compute consequências físicas
- **✓ Derive** estruturas matemáticas necessárias
- Conecte conceitos relacionados no mesmo domínio
- Marque especulações explicitamente
- **Documente** gaps honestamente
- X Não invente valores arbitrários sem justificativa
- X Não force conexões entre domínios não relacionados
- X Não apresente especulações como fatos

#### 10.3 Citação Final

"Inferências não se dão ao acaso, mesmo quando desconhece sua arquitetura."

— Marcus Brancaglione

Quando uma teoria é completa, ela **demanda** certas estruturas. Reconhecer essas demandas não é especular — é interpretar corretamente.

#### FIM DO PROTOCOLO HERMES-LIBER v2.0

© 2025 Marcus Brancaglione / Instituto ReCivitas

Licença: ARobinRight 3.0

Uso: Universal para todos modelos Claude