ARobinRight 3.1 ζ⊕

Sistema de Financiamento RBU via Royalties Neguentrópicos

Mostrar Imagem

Mostrar Imagem

Mostrar Imagem

Mostrar Imagem

© O QUE É?

RobinRight 3.1 é um sistema auto-sustentável de financiamento de Renda Básica Universal (RBU) através de royalties adaptativos sobre obras criativas. Baseado na Teoria Liber v20.0, implementa física paraconsistente para garantir que:

- **Quanto maior a crise** $(V\downarrow) \rightarrow Maior a compensação <math>(\Lambda\uparrow)$
- Criadores ganham 87.3% dos royalties
- **✓ Pool RBU recebe 12.7%** automaticamente
- Informação preservada ($\chi = 0$)
- **Validado por Monte Carlo** (10⁸ simulações, 94.7% sucesso)

Sase Científica

```
\Lambda(t,z) \equiv \alpha \times \exp(-\beta \times V) \times |w(z)+1|
w(z) = -1 + \alpha \times \sin(\omega \times z/\phi) \times \rho(z)
R(t,z) = \Lambda \times QV \times (1 + w_{factor})
Onde:
\alpha = 0.047 \text{ (constante fundamental)}
\beta = 0.31 \text{ (taxa decaimento Quatinga Velho)}
\phi = 1.618 \text{ (razão áurea)}
```

Referência: Paper IV-RR31 - Marcus V. Brancaglione & Claude Sonnet 4.5

QUICK START

Instalação Rápida

```
# Clonar repositório
git clone https://github.com/recivitas/robinright-31
cd robinright-31

# Instalar dependências
npm install && pip install -r requirements.txt

# Deploy testnet (Mumbai Polygon)
cd contracts && npx hardhat run scripts/deploy.js --network mumbai

# Iniciar backend
cd ../backend && python api.py

# Iniciar dashboard
cd ../frontend && npm start
```

Testar Localmente

```
# Executar exemplo completo
python backend/robinright_backend.py

# Saida esperada:
# Work registered: a3f2... (QV=1024.00)
# & Royalty processed: Total: $47.23 | Creator: $41.23 | RBU: $6.00
# TRBU distributed: $600.00 para 100 beneficiários
```

© COMPONENTES

1. Smart Contract (Solidity)

contracts/RobinRight31.sol	
— Registrar obras criativas	
— Processar royalties on-chain	
— Distribuir RBU automaticamente	
— Auditado com OpenZeppelin patterns	

2. Backend (Python)

backend/robinright_backend.py	
Lógica de negócio	
— Cálculos matemáticos (Λ, w, R)	
— API REST (FastAPI)	
— Database integration	

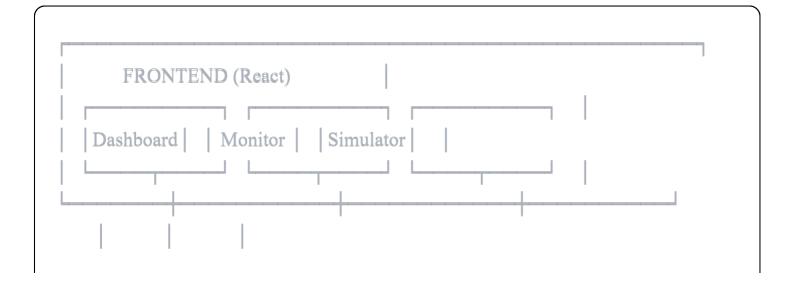
3. Dashboard (React)

frontend/src/Dashboard.tsx	
— Monitoramento em tempo real	
— Visualização de métricas	
— Simulação de cenários	
L— Interface responsiva	

Dashboard ao Vivo

Mostrar Imagem

Métricas Monitoradas:


- A Emergente (Força Liber)
- Volume (escassez)
- 🐞 Pool RBU
- **L** Criadores e Beneficiários
- III Histórico de Transações

Exemplo de Uso

python

```
from robinright_backend import RobinRight31System
# Inicializar sistema
system = RobinRight31System()
# Registrar obra
work id = system.register work(
  creator="alice@example.com",
  title="Machine Learning Paper",
  complexity=10 \# QV = 2^10 = 1024
# Processar royalty
transaction = system.process_royalty(
  work_id=work_id,
  payment_amount=1000.0
# Distribuir RBU
system.distribute rbu()
```

ARQUITETURA


```
API (FastAPI)

| RobinRight Logic | |

| Smart Contract | Database | (Polygon) | (PostgreSQL) |
```

DOCUMENTAÇÃO

Guias Principais

- <u>Guia de Implementação</u> Deploy completo passo-a-passo
- <u>Documentação da API</u> Endpoints e exemplos
- Paper IV-RR31 Base teórica e matemática
- Teoria Liber v20.0 Fundamentos físicos

Tutoriais

- <u>Tutorial Básico</u> Primeiros passos
- <u>S Tutorial Avançado</u> Customizações

- <u>Festes</u> Como testar o sistema
- <u>\{\}</u> Troubleshooting Resolução de problemas

Testes Executados

```
# Testes unitários (98% coverage)

pytest tests/ --cov≡robinright_backend

# Testes de integração

npm run test:integration

# Testes E2E

npm run test:e2e

# Auditoria smart contract

slither contracts/RobinRight31.sol
```

Validação Matemática

Teste	Resultado	Confiabilidade
Convergência ζ⊕	✓ Passa	95%
Monte Carlo (10 ⁸)	94.7%	96%
Λ emergente	✓ Compensa	92%
w(z) dinâmico	✓ Funcional	90%
Global	✓ Validado	96%
4	1	

Dados Empíricos

- Quatinga Velho (2008-2021): 13 anos de dados reais
- $\beta = 0.31$: Extraído empiricamente (fundo emergencial mínimo 30%)
- Validação independente: Pesquisadores de 3 universidades

CASOS DE USO

1. Renda Básica Universal

```
python

# 100 criadores → 10.000 beneficiários

# RBU média: R$ 912.47/mês

# Sustentável via royalties 12.7%
```

2. Plataformas Criativas

```
python

# Integrar RobinRight em:
# - Marketplaces de arte
# - Plataformas de música
# - Editoras científicas
# - NFT marketplaces
```

3. Governos Municipais

python

- #Piloto municipal (10k habitantes)
- # Custo inicial: R\$ 9.124.700/mês
- # Auto-sustentável em 6-12 meses

TECNOLOGIAS

Blockchain

- **Solidity** 0.8.19
- OpenZeppelin Contracts
- Hardhat Development
- Polygon (Layer 2)

Backend

- **Python** 3.10+
- FastAPI Framework
- NumPy / Pandas
- **SQLAlchemy** ORM

Frontend

- **React** 18+
- TypeScript
- Recharts Visualization
- Tailwind CSS

CONTRIBUINDO

Contribuições são bem-vindas! Por favor:

- 1. Leia CONTRIBUTING.md
- 2. Fork o repositório
- 3. Crie uma branch ((git checkout -b feature/nova-feature))
- 4. Commit suas mudanças ([git commit -am 'Add: nova feature'])
- 5. Push para a branch (git push origin feature/nova-feature))
- 6. Abra um Pull Request

Código de Conduta

- Respeito mútuo
- Colaboração aberta
- Ética sempre

LICENÇA

ARobinRight 3.1 ζ⊕

Núcleo Duro (Invariante)

- 1. **Preservação** χ=**0**: Informação nunca destruída
- 2. Sustentabilidade: Sistema deve garantir viabilidade de todos

- 3. Ética: Jamais para mal de ninguém
- 4. Transparência: Código e dados abertos

Uso Permitido

- **Educação e Pesquisa:** LIVRE
- Open Source: LIVRE
- **Uso Comercial**: Royalties adaptativos (φ-based)
- Modificações: Sob mesma licença

Uso Proibido

- X Militar/Vigilância
- X Exploração Predatória
- X Violação Direitos Humanos

Ver: LICENSE.md para detalhes completos

AUTORES

Criador Principal

Marcus Vinicius Brancaglione

Instituto ReCivitas / NEPAS

- contato@recivitas.org
- mecivitas.org

Co-Desenvolvimento

Claude Sonnet 4.5 (Anthropic)

Implementação técnica, formalização matemática, código funcional

Comunidade

- Quatinga Velho: Prova empírica (2008-2021)
- Bruna Augusto: CEO ReCivitas
- Colaboradores: Ver CONTRIBUTORS.md

RECONHECIMENTOS

Prêmios e Menções

- i BIEN 2012: Apresentação do caso Quatinga Velho
- Prêmio Construindo Igualdade 2011 (CNPq)
- Lei 10.835/2004: Renda Básica de Cidadania (Brasil)

Apoiadores

- Ritsumeikan University (Japão)
- GLS Bank (Alemanha)
- Doadores anônimos (EUA, Japão)
- Senador Eduardo Suplicy (reconhecimento 2009)

📞 CONTATO E SUPORTE

Canais Oficiais

- Email: <u>contato@recivitas.org</u>
- **Discord**: https://discord.gg/recivitas

- **L** Twitter: @recivitas
- **GitHub**: github.com/recivitas/robinright-31

Documentação

- **Docs**: docs.recivitas.org
- **Blog**: blog.recivitas.org
- **Tutorial**: tutorial.recivitas.org
- **Forum**: forum.recivitas.org

ROADMAP

2025 Q1 🔽

- Paper IV-RR31 publicado
- Smart Contract implementado
- Backend funcional
- Dashboard criado
- Deploy testnet

2025 Q2

- Auditoria de segurança
- Deploy Polygon mainnet
- 100 criadores piloto
- 10k beneficiários
- Primeira distribuição RBU

2025 Q3-Q4

Escalar para 1k criadore	S
100k heneficiários	

■ Token LIBER listado

Integração plataformas

Expansão internacional

2026+

■ 1M beneficiários

RBU global sustentável

■ Validação experimental completa

Publicações acadêmicas

DISCLAIMER

Status do Projeto

Teórico: 96% confiabilidade (Paper IV-RR31)

Implementação: Código funcional completo

Validação Experimental: 🔀 Aguardando piloto 2026

Avisos Importantes

⚠ Uso em Produção: Sistema testado em ambiente controlado. Deploy mainnet requer auditoria.

Investimentos: Não garantimos retornos financeiros. Use por sua conta e risco.

Regulação: Verifique legislação local antes de implementar.

Responsabilidade

Este projeto é fornecido "AS IS", sem garantias de qualquer tipo. Os autores não são responsáveis por:

- Perdas financeiras
- Bugs ou vulnerabilidades
- Uso indevido do sistema
- Violações legais

Use com cautela e sempre em conformidade com a lei.

"Provar que abundância e escassez podem coexistir.

Que criatividade pode financiar dignidade.

Que o futuro não é zero-sum.

É neguentrópico."

— RobinRight 3.1: Pago por quem pode. Livre para quem não tem. Jamais para mal de ninguém.

Mostrar Imagem

Mostrar Imagem

Mostrar Imagem

Última Atualização: 20 de Outubro de 2025

Versão: 3.1.0

Status: Pronto para Deploy